Sampling Statistics,

El

MICRO CHARTS: 280, 6502-65XX, 8080-8085, 8036-8088,
8048 Family, 54/7400 TTL pinouts, BASIC Aigorithms,
15 Minute BASIC, IBM & GW BASIC,

This card is not a promotional
item. Please observe our
copyright and replace any

copies with plastic originals.

100%
PLASTIC

Inexpensive plastic MICRO CHARTS are easily purchased from
leading dealers. You can also send a check, bearing your
POB 174, Dept 11, Hackensack, NJ 07602. (201) 342-8518

address on front and title(s) you want on back, to Micro Logic,

INSTANT
ACCESS

© 1985

MICRO LOGIC, POB 174

HACKENSACK, NJ 07602

INTRODUCTION

This card is a concise comprehensive reference
for C language programmers and those learning C.
It Il:ll you time and lets you avoid cumbersome
manuals.

The C pro?rulming language is becoming t!
standard language for developing both s |t-m and
application progrum:. There are several reasons
for its popularity. C is flexible with few
restrictions on the programmer. C compilers
oduno fast and short machine code. And
s C is the primary language used in the
trndc-nrk of AT&T Bell Laboratories
op-r-_i system (over 90% of the UNIX system is
written in C). Because it is a popular
level™ language, it allows software to be
un- on many machines without being rewritten.

OPERATORS

OPER DESCRIPTION EXAMPLE ASSOC
{] Function call sqrt (x
Array element ref vnls[10 L-R
-> Ptr to struc memb tr->name
. Struc membar ref amp oyee.name
- Unary minus -a
++ Increment ++ptr
- Decrement --count
1 Logical negation ! done
Ones complement 077
* Ptr indirection ‘ptr

& Address of
sizeof Size in bytes

sizaof (struct s)
(type) Type conversion

(float) total / n

typedef

typedef is used to assign a new name to a data
type. To use it, make believe you're declaring a
variable of that particular data type. UWhere
you'd normally write the variable name, write the
new data type name instead. In front of
everything, place the keyword typedef. For
example:

typ?d-f struct /* define type COMPLEX */
float real;
float imaginarys
J

} COMPLEX

COMPLEX c1, c2, sum; /* declare vars */

* Multiplication i+
This card is organized so that you can keep you: / Division £ i L-R CONSTANTS
train of thoug ht while programming in C (ulthout 3 Modulus i%]
stopping to flip thru a manual.) The result is TYPE SYNTAX EXAMPLES
fewer interruptions, more error-free code, and + Addition vals + i L-R
higher productivity. - Subtruction x - 100 char slnglt quotes 'a' ')n'
char string double quotes "hello" "
The following notations are used: []--enclosed << Left shift byte << 4 L-R double note 1
item is optional; fn--function; rtn--return; > Right shift i» 2 enumeration note 2 red t
td--pointed; ptr--pointer; TRUE--non-zero value; loa note 3 .2 2.,e-15 -1E!
ALSE--zero value. < Less than i < 100 hex integer X, 0x DxFF DXff 0xADOO
<= Less than or eq to i <= j L-R int
> Greater than i>o long int lorlL 251 1DOL (note 4)
BASIC DATA TYPES >= Greater or eq to grade >= 90 octal int 0 (zero) 0777 00
== Equal to result == 0 L-R 1. all float constants are treated as double
TYPE DESCRIPTION 1= Not equal to c 1= EOF 2. identifier previously declared for an
enumerated type; value treated as int
char Single character & Bitwise AND word & 077 L-R . decimal point and/or scientific notation
double Extended precision floating pt 4. or any int too large for normal int
float Floating point - Bitwise XOR word! * word2 L-R
1on Extondad ision int | Bitwise OR | bi R
ong int xtended precision integer twise word bits L=
short int Reduced precision int VARIABLE USAGE
unsigned char Non-negative character & Logical AND j>08& j<10 L-R
unsigned int Non-negative Lntogcr STORAGE CAN BE INIT
void No type; used for I Logical OR i>80 || x_flag L-R CLASS DECLARED REFERENCED WITH NOTES
declarations and 'lgnnring a
value returned from a fn ? Conditional expr (a >b) ?a t b R-L static outside fn :nyuhare in const 1
expr
= *= [z %= 4= -= inside fn/b inside fn/b only
CONVERSION OF DATA TYPES e L e o count += 2)
Assignment opers R-L extern outside fn ;ny:?;ra g-ﬂnot 2
n e e
Before performing an arithmetic operation, » Comma operator i=10, j=0 L-R inside fn/b inside fn/b init
operands are made consistent with each other by -
converting with this procedure: auto inside fn/b inside fn/b any expr 3

re converted to double.
s are converted to int.
» the other is
The result is double.
is long int, the other is
The result is long int.
» the other is

t is unsigned.
ch-d, both op-r-nds must be
1t will be int

1. All float operand:
All char or short op
2, If either operand
converted to
3. If either
converted to
4. If either
converted to ul
S, If this st-p s
of type int. The r

STATEMENT SUMMARY

STATEMENT DESCRIPTION
breaks Terminates execution of for,
while, do, or switch
continue; 5kip- statements that follow
in a do, for, or while; then
continues executing the loop
do Executes statement until

expr is FALSE; statement is
executed at least once

statement
while (expr)3
ion el onces’

for é el; e2; e3) Evalua XPT

statement t repeatedly evaluates e2,
statement, and e3 (1n that
order) until e2 is FALSE
egs for (i=1; i<=103 +¢£x...|
note that statement might not
be executed if e2 is FALSE
on first evaluation

goto labels

Branches to statement
preceded by label:, which
must be in same function as
the goto

if (expr) If expr Ls TRUE, thnn
othervise skLp. 1t

if (expr) : If expr is TRUE, t?on

L + '
else " ath-rvi-|’- ecutes

No effect; satisfies
statement requirement in
do, for, and while

3 (null statement)

returng Returns from function back
to caller; no value returned
return exprs Returns from function back
to caller with value of expr
iexpr is evaluated and then
compared against integer
case constis constant exprs consti,
statement con-tz. eeey if a match is
voe found, then the statements
breaks that follow the case (up to
case const2: the bresk) will be executed;
statement if no match is found, then
the statements in the

-u?teh (iexpr)

;;;-k; default case (if supplied)
voe will be executed; iexpr
defaults must be an integer-valued

statement expression

bresks

)
while (expr) Executes statement as long
statement as expr is TRUE; statement
might not be executed if
expr is FALSE the first time
t's evaluated

NOTESs

expr is any expression; statement is any

expression terminated by a semicolon, one of the
statements listed above, or one or more
statements enclosed by braces (...).

NOTES: L-R means left-to-right, R-L right-to-
left.

Operators are listed in decreasing

Ops in the same box have

Associativity datarminos

ntinn for ops with the

(eg: =b=cj is .vuluated right-
3 (o =c)e

EXPRESSIONS ESC CHARS

An expression is a \b Backspace
\f Form feed
\n Newlil
\r Carriage return
\t Horizontal tab
\v Vertical tab
\} Backslash
\! Double quote
h Single quote
\(CR) Line
continuation
\nnn Octal character
(where appropriate) value

is also an expres-

sion. Expressions

may b pnrlnthttiltd. An expression is a
"constant expression" if each term is a
constant.

PREPROCESSOR STATEMENTS

STATEMENT

DESCRIPTION

register inside fn/b inside fn/b any expr .3,4

omitted outside fn anywhere in const 5
file or other expr
iles w/ext only
declaration

inside fn/b (see nutng (see auto) 6

FUNCTIONS

Functions follow this format:

ret typ- name (-r91.lr92....)
[rg_declarations

local_var_declarations
statement
statement

“es
return value;

)

Functions can be declared extern
(default) or static. Static fns
can be called only from the file in
which they are defined. ret_type
is the rtn type for the fn and can
be void if the fn rtns no value or
omitted if it rtns an int.

EXAMPLE s
/* fn to find the m?
of a character string */

int strlen (s)
char *s;

int length = 03

while (*s++)
++length;
return (ongth)y

To declare the type of value
returned by a function you're
calling, use a declaration of the
forms ret_type name 3

STRUCTURES

A structure sname of specified
members is declared with a
statement of the form:

strfct sname

member_declaration;
member_declaration;

) vari-blo_lint'

Each member_declaration is a typa
followed by one or more memb

names. An n-bit wide field mnlm.
is declared with a statement of the
form ... type mname:n; ... If mname
is omitted, n unnamed bits are
reserved; if n is also zero, the
next field is aligned on a word

+ variable_list (uptinnnl)

NOYESI (fn/b means function or statement block)
init at start of prog execution; deflt is zero
var must be defined in only 1 place w/o extern
cannot init arrays & structures; var is init
each time fn is called; no default value

ed; restrict. types

N

S.
« in only one placej

is]
6. defaults to auto

ARRAYS

A single-dimensional array aname of n elements of
a specified type and with specified initial
values (optional) is declared with:

type aname[n] = { vall, val2, ... };

If complete list of initial values is specified,
n can be omitted. Only static or global arrays
can be initialized. Char arrays can be init by a
string of chars in double quotes. Valid
subscripts of the array range from 0 through n-1.
Multi di ional arrays are declared with:

text will be substituted for
id wherever it later appears
in thn progr-n; if construct
id(a1,a:) is used, args
al, ni will be replaced
where thcy appear in text by
corresponding args of macro

#define id text

call
#if expr If constant expression expr is
con TRUE, statements up to fendif
fendif will be groclssnd. otherwise
they will not b
#if expr If constant expression expr is
vee TRUE, stat
felse will be processed,
ees those between the fe.
fendif fendif will be processed
#ifdef id If id is defined (with #define

ees or on the command lino{ state-

fendif ments up to fendif wil
processed; otherwise they vill
not be; (optional felse)

#ifndef id If id has not been defined,
oo statements up to fendif will
fendif be processed; (optional felse
construct)

Inserts contents of file in
programs double quotes mean
look first in same directory
as source prog, then in
standard places; brackets mean
only standard places

lincludu "file"
lincludu <file>

#line n "file" Identifies subsequent lines
of the prog as coming from
file, beginning at line nj
file is optional

fundef id Remove definition of id
NOTESs Preprocessor statements can be continued
over multiple lines provided each line to be
continued ends with a backslash character (\).
Statements can also be nested.

EXAMPLES:

fdefine BUFSIZE 5
#define max(a,b) (
finclude <stdio.h>

12
((a) > (b)) 2 (a) s (b))

type aname[n1][n2])... = [init_list };

Values liutnd in the Snitinlixution list are
assigned in 'dimension order' (i.e. as if last
dimension were increasing lirst) Nested pairs
of braces can be used to chan is order if
desired. Here are some examples:

/* array of char */
static char hisname[] = ["John Smith" };

/* urrny of chur trs */
static char ays
{"Sun" "Non", Tua ,“H.d" "Thu","Fri","sat"};

/* 3 x 2 array of 1nt
int mntrix [§][2]

1u ’
11, 21)s

/* array of struct complex */
struct complex sensor_data[100];

POINTERS

A variable name can be declared to be a pointer
to a specified type by a statement of the

forms type *name;
EXAMPLESs
/* numptr points to floating number */
float *numptr;

/* pointer to struct complex */
struct complex *cpj;

/* if the real part of the complex
struct pointed to by cp is 0.0 ... */
if (cp->real == 0.0

/* ptr_to char; set equal to address of
buf(25]) (i.e. pointing to buf[25]) */
char *sptr = &buf[25];

/* store c' lntn loc ptd to by sptr */
*sptr =

/* set sptr pointing to next loc in buf */
++sptry

/* ptr to fn rct?rnlnq int */

Lnt (*fptr)

declares variables of that
structure type. If sname i
supplied, variables can also later
be declared using the format:

struct sname variable_list;
EXAMPLE s

/* define complex struct */
struct complex

float realj;
) float imaginary;
H

stnflc struct ?ouplnx cl =
. .
struct cauolnx c2, csumj

c2 = c1; /* assign c1 to c2 */
csum.real = cl.real + c2.real;

UNIONS

A union uname of members occupying
the same area of memory is declared
with a statement of the form:

union uname

member_declaration;
member_declaration;

] varisble _list;

Each member_declaration is a type
followed by one or more member
names; variable_list (optional)
declares variables of the

particular union type. If uname is
supplied, then variables can also
later be declared using the format:

union uname variable_list;
NOTE: unions cannot be initialized.

ENUM DATA TYPES

An enumerated data type ename with
values enuml, enum2, ... is declar-
ed with a statement of the form:

enum ename { enuml, enum o
variable llntl

The optional variable_list declares
riables of the

ng at 0
values by the

ename is supplied, then variables
can also be declared later using
the format

enum ename variable_list;

EXAMPLES:

/* define boolean */

enum boolean (true, false);

/* decla alue */

MICRO LOGIC, POB 174

HACKENSACK, NJ 07602

printf

printf is used to write data to standard
output (normally, your tarminal.) To write
to a file, use fprintf; to 'write' data
into a character array, use sprintf. The
general format of a printf call is:

printf (format, argl, arg2,...)

where format is a character string
describing how argl, arg2, ... are to be
printed. The general format of an item in
the format string is:

S[flign][lil.][.prlc][l]typc

flags:
- left justify value (default is
right” justify)

precede value with a + or - sign
precede pos value with a blank
precede octal value with 0, hex
value with Ox (or OX for type
X); force display of decimal
point for float value, and leave
trailing zeroes for type g and G

+
blank
#

size: is a number specifying the minimum
size of the field; * instead of number
means next arg to printf specifies the size

prec: is the minimum number of digits to
display for ints; number of decimal places
for e and f; max number of significant
digits for g; max number of chars for s; *
instead of number means next arg to printf
specifies the precision

1: indicates a long int is being display-
ed; must be followed by d, o, u, x or

type: specifies the type of value to be
displayed per the following single
character codes:

d an int

an unsigned int

an int in octal format

an int in hex format, using a-f

an _int in hex format, using A-F

a float (to 6 dec places by default)

a float in exponential format (to &

decimal places by default g

same as e oxc-pt display E before

exponent ins: of e

a float in - fotmut. whichever
kes less space w/o losing precision
float in f or E format, whichever
kes less space

® © m @-xxo0cC
-

1l-terminated char string (null
not required if precision is given)
% an actual percent sign

NOTES: characters in the format string not
preceded by % are literally printed;
floating pt formats display both floats and
doubles; integer formats can display chars,
short ints or ints (or long ints if type is

precedsd by 1). EXAMPLE:
i1 =
printf "id + ’d xs %#x\n",
i1, i2, i1 + i2);
Produces: 10 + 20 is Oxle
UNIX cc COMMAND
Format: cc [options] files
OPTION DESCRIPTION
-c Don't link the program; forces
creation of a .0 file

-D id=text Define id with associatsd text
(exactly as if fdefine id text
appeared in prog g); if just -D id
is specified, id is ds ined as 1

-E Run preprocessor onl

-f Compile for machine w/o floating
point hardware
Generate more info for sdb use

—I dir Search dir for include files

=1x Link prog with 1lib x; -lm for math

-0 file Write executable object into files;
a.out is default

-0 Optimize the code

-p Compile for analysis with prof cmd

-S Save assembler output in .s file

NOTE: Some of the above are actua
preprocessor (cpp) and linker (ld) optluns.
The standard C library libc is
automatically linked with a program.

EXAMPLES: cc test.c Compiles test.c and
places executal ble object into a.out.

cc -0 test main.c proc.c Compiles main.c
and proc.c and places executable object
into test.

cc -0 stats.c -lm Compiles stats.c,
optImizes it, and links it with the math
library (-lm must be placed after stats.c).
cc -DDEBUG x1.c x2.0 Compiles x1.c, with
defIned name DEBUG, and links it with x2.0

THE lint COMMAND

lint can help you find bugs in your program
due to nonportable use of the language,
inconsistent use of variables,
uninitialized variables, passing wrong
argument types to functions, and so on.
Format: 1lint [options] files

oPT USE TO PREVENT FLAGGING OF

-a long values assigned to not-long vars

-b break statements that can't be reached

-h suspected bugs, waste, or style

-u functions and external vars used but
not defined, or defined and not used

-v unused function arguments

-x vars declared extern and never used

- Other options -

-1x check pirog against nt library
11ib-1x.1n; (-1lm uses lint meth 1ib)

-n don't use standard or portable lint lib

-p chesk portability to other C dialects

-D see cc command

-1 see cc command

scanf i
To read
To 'rea
sscanf.

scan’
where f
data to

where t
format

[]

scanf

s used to read data from standard input.
data from a particular file, use fscanf.
d' data from a character array, use

The general format of a scanf call is:

f (format, argl, arg2, ...)

ormat is a character string describing the
be read and argl, arg2, ... point to

he read-in data are to be stored. The

of an item in the format string is:

[size][1h]type
specifies that the field is to be skipped

and not assigned (i.e., no corresponding
ptr is supplied in the arg list)

size a number giving the max size of the field
1h is '1' if value read is to be stored in a
long int or double, or 'h' to store in
short int
type indicates the type of value being, read:
CORRESPONDING
USE TO READ A ARG IS PTR TO
d decimal Lntoz:. int
u unsigned decimal integer unsigned int
o octa lneago int
x hexadecimal integer int
e,f,g floating point number float
string of chars terminated array of char
h{ a white-space character
c le character char
[+se] string of chars terminated array of char
by any chnr not lnclo.l
between the [and
first ch-r in brtcknts is %,
then following chars are
string terminators instead
% percent sign not assigned
NOTES: Any chars in format string not preceded by
will literally match chars on input (e.g. scanf
(“value—id", &ival); will match chars "value=" on
input, followed by an integer which will be read
and stored in ival. A blank space in format
string matches zero or more blank spaces on
input.
EXAMPLE: scanf ("%s %f %1d", text, &fval,
&lval); will read a string of chars, storing it
into character array ptd to by text; a floating
value, storing it into fval; and a long int,
storing it into lval.

COMMONLY USED FUNCTIONS

INCLUDE
FUNCTION FILE DESCRIPTION /ERROR RETURN/
int abs (n) absolute value of n
double acos (d) m arccosine of
char *asctime t convert tm struct to string
(*tm and rtn ptr to it
double asin Ed; m arcsine of d /0/
double atan (d) m arctangent of d
doug%ed;tanz m arctangent of d1/d2
’
double atof (s) ascii to float conv /HUGE,O0/
int atoi (s) ascii to int conversion
long atol (s) ascii to long conversion
char *calloc allocate space for ul
(u1,u2) elements each u2 bytes large,
and set to 0 /NULL/
double ceil (d) m smallest integer not < d
void clearerr s reset error (incl. EOF)
f on file
long clock () CPU time (microsec) since
first call to clock
double cos (d) m cosine of d (d in radians)
char *ctime (*1) t convert time ptd to by 1 to
string and rtn ptr to it
void exit (n) terminate execution,
returning exit status n
double exp (d) m e to the d-th power /HUGE/
double fabs (d) m absolute value of d
int fclose (f) s close file /EOF/
int feof (f s TRUE if end-of-file cn {3
int ferror fg s TRUE if I/0 error on
int fflush (f s force data write to f /EDF/
int fgetc (f) s read next char from f /EOF/
int fgets s read n-1 chars from f unless
(s,n,f) newline or end of file
reached; newline is stored
in s if read /NULL/
int fileno (fz s integer file dascriptor for f
double floor (d) m largest integer not >
double fmod m d1 modulo d2
d1,d2
FILE *fopen s upsn file named s1, mode s2;
(s1,s2 "y"oyrite, "r" =read,
"a"=append, ("w+", "r+", "a+"
are update modes) /NULL/
int fprintf s write args tu f according to
format s /< 0
int fputc f; s write ¢ to f /EOF/
int fputs s write s to f /EOF/
int fread s read n2 data items from f
(s,n1,n2,f) into s; n1 is number bytes
of each item /0,
void free (s) freaubl7ck of space ptd to by
s
FILE *freopen s close f and open s1 with
(s1,82,f mode s2 (see fopen) /NULL/
int fscanf s read args from f using format
TN) s3 return is as for scanf
int fseek s position file ptr; if n=0, 1
(f,1,n) is offset from beginning;
n=1, from current pos; n=2,
from end of file /non-zero/
long ftell (f) s ?uirent offset from start of
ile
int furite s write n2 data items to f from
(syn1,n2,f) s3; n1 is no. bytes of each
item /NULL/
int getc (f) read next char from f /EOF/
int getchar () s 7Ead/next char from stdin
char *getenv (s) rtn ptr to value of
environment name s /NULL/
int getopt return next option letter in
(argc,argv,s) argc that matches a letter
in s; sets optarg (char *)
pointing to it, and optind
(int) to index in argv of
next arg to be processed;
returns EOF when all args
processed
char *gets (s) s read chars into s from stdin

until newline or eof reached;

newline not stored /NULL/

int getw (f) s read next word from f; use
feof & ferror to check for
error
struct tm t convert time ptd to by 1 to
*gmtime (*1)

is alphabetic

is alphanumeric

is less than 0200
is 0177 or < 040

is 0-8

is 041-0176

is a printable char

—
e
[=
L
-
- -
nooonoon

int isgraph
int isprint

nooooono
- - o
E E

{ -

L

-

L~

E if c
$0A0-0175)
RUE if c is neither a
control nor alphanumeric char
TRUE if c is space, tab,
carriage return, newline,
vertical tab or form feed

int ispunct (c) ¢

int isspace (c) ¢

struct tm t convert time ptd to by 1 to
*localtime (*1) local time
double log dz m natural log of d /0/
double 1log10 (d) m 1log base 10 of d /0/
void lon g j restore environment from
tnv.n? jmp_buf env; causes setjmp

to Teturn n if supplied or
n=
allocate u bytes of storag7
L

char *malloc (u)
and return ptr to it /NULI

char *memchr n rtn ptr in s of 1st incident
S,CyN of c, looking at n chars at
most, or NULL if not found
int memcmp n rtn <0, =0, >0 if s1 is
(s1,82,n) lexicugraphicnlly < 82, = 82
or > s2, comparing up to n
chars
char *memccp! n copy s2 to s1 until c is
(s1,82,c,n copied or n chars are copied
char *memcpy n copy n chars from s2 to s1
s1,82,n
char *memset n set n chars ptd to by s to
S,CyN value c
int mknod create file s, mode i1; i2
(s,i1,i2) needed only for certain

values of i1 /-1

create temp fi15| s contains
six trailing X's that mktemp
replaces with file name
close a stream opened by
popen /-1/

write s followed by descrip-
tion of last error to stdout

char *mktemp (s)

int pclose (f) s

void perror (s)

FILE *popen s execute command in s1; s2 is
s1,s2 "r" to read its output; "uw"
to write to its input; rtns
ptr to stream /NULL/
double pow m d1 to the d2-th power
(d1,d2) /0,HUGE/
int printf s write args to stdout per
format s (see das:r.) /< 0/
int putc (csf) s uwrite c to f /EOF/
int putchar (c) s write c to stdout /EOF/
int puts (s) s write s to stdout /EOF/
int putw (n,f) s write word n to f /EOF/
int rand random number (see srand)

char *realloc
(syu)

void rewind (f) s

int scanf s
(Syees)

int setjmp (env) j

change the size of block s
to u and rtn ptr to it /NULL/
rewind f

read args from stdin per
format s (see descr.); rtns
number of values read or EOF
save stack environment in
jump, buf env; rtns 0 (see
long

sina of d (d in radians)
suspend execution for u

double sin (d) m
unsigned sleep

u seconds
int sprintf s write args to buffer s1 per
81,825,000 format s o/

double sqrt (d) m

square root of d /0/
void srand (u)

reset random number generator

int sscanf s read args from string s1 per
514525000 format s2; rtn is as in scanf

char *strcat r concatenate s2 to end of si1;
(s1,s rtns s1

char *strchr r rtn ptr to 1st occurrence of
s,C c in s or NULL if not found

int strcmp r compare s1 and s2; rtns < O,
sl,s =0, > 0 if s1 lexicograph-

ically < s2, = s2, or > s2
char *strcpy r copy s2 to s1; rtns sl

S S,
int strlen (s) r 1length of s (not incl. null)

char *strncat r concatenate at most n chars
(s1,s2,n) from s2 to end of s1; rtns s1

int strncm r compare at most n chars of
s1,s2,n s1 to s2; rtn is as in strcmp

int strncp r copy at most n chars from s2
(s1,s2,n to s1; rtns s1

chur ‘strrchr r rtn ptr to last occurrence of

c in s or NULL if not found
ascii to long conversion,
base n; on rtn, *s (if not
NULL) pts to char in s that
terminated the scan /0/
execute s as if it were typed
at terminal; rtns exit status

1ong strtol
(sy*syn)

int system (s) s

tangent of d (radians) /HUGE/
create temporary file name in
directory s1, with prefix
chars s2 /NULL/

returns time & date in
seconds; if 1 is non-zero,
time is stored in loc ptd to
by 1; convert time rtnd with
ctime, localtime or gmtime
create temporary file, open
for update, and rtn ptr to
it; file is removed when
prog finishes

generate temporary file name;
place result in s if s non-
null, else rtn ptr to name
convert c to ascii
convert c to lowercase
convert c to uppercase

insert c back into file f

as if c wasn't read) /EOF/
remove file s /-1/

double tan (d) m
char *tempnam s
(s1,s2)

long time (*1)

FILE *tmpfile () s

char *tmpnam (s) s

int tolower

int toupper

int ungetc (c,f)
int unlink (s)

NOTES:

int toascii c
c
c
s

Function argument types: c--char, n--int, u--
unsigned int, l--long int, d--double, f--ptr to
FILE, s--ptr to char

char and short int are converted to int when
passed to functions; float is converted to double

Include files are abbreviated as follows:
c--ctype.h, j--setjmp.h, m--math.h, n--memory.h,
r--string.h, s--stdio.h, t--time.h

Value between slashes is returned if function
detects an error; global int errno also gets set
to specific error number.

Function descriptions based on UNIX System V

CMD LINE ARGS

Argume:
comman
progra
passed
throu?
argc

number
is at

array

pointe:
each a:
points
progral
sscanf
argume
to oth
exampl

check

starts
UNIX)
checks

argc -
argv[0
argv(1
argv[2

To con

Snbits

main (
int
cha:
(

nts typed in on the
d line when a
m is executed are
to the program
h argc and argv.
s a count of the
of ur?um-nts. and
least 1; argv is an
of character
rs that point to
rgument . nrquD]
to the name of the
m executed. Use
to convert
nts stored in argv
er data types. or
e:

phone 35.79

execution (under
of a program called
with

3
chsck"
"phone"
"35 79"

vert number in
!, use sscanf.

argc, argv)

argc;

r *argu[];

float amount;

sscanf (argv(2],
"gf", &amount);

UNIX TOOLS

TooL DESCRIPTION

adb debugger

ar library archiver

cb - formats programs

cflow ext references

ctrace traces execution

cxref X-ref listing

lint checks progs for
possible bugs and
non-portable
language usage

make recreates program
systems based on
specified file
dependencies

prof displays
performance
statistics

SCCs maintains large
program systems

sdb symbolic debugger

REMINDERS

1. Arr
0 and
elemen
2, Use "
testin
3. Use
pointe
struct
4. Ar
ptrs
nf non-
S 'x'
" is
:hur.
6. If
and c
then c
but c=
7. In

ay indices start at
go to number of
ts minus 1.

==" gg ot "=") for
g _equality.

"o fur structure
rs and " or
ures.

s to scanf must be
place "&" in front
pttsg

is of type char;

of type ptr to

cp is ptr to char,
is array of char,
="helln is okay,
hello" isn' t
x[i]=++i, it's not

defined whether left or

right
evalua
8. In
break
to nex

9. Return type for non-int

fns mu:
unless
define
10. Fn
consis
declar
will p:
result
1. In
is tha

incremented; in p++, vnlu-

is tha
increm

side will be

ted first.

switch, omitting
causes fall-through
t case.

st be declared
dfn previously

;rg types must be
tent with type
ed (e.g. sqrt (2)
roduce the wrong

)

++p, value of expr
t of p after it's

t of p before it's
ented.

ASCII

CHR OC HX
nul 0
soh 1
stx 2
etx 3
eot ;
enq
ack 6
bel 7
bs 10
ht 11
nl 12
vt 13
ff 14
cr 15
so 16
si 17
20
21
22
3

CODPODVNNSLUN-OTMMOODPODID NS GIN=O

Bt e b b b b ik o s b =D

106 46

NONSUNSONOUNSUN=O
&
F -

o it o i s o o b e il iah b 2 b b b B i
NNNRNNNNN S =SS aaa0

auuu
o
©

PN <XESCHNDIOVOZICXUHIOIMONDEZBIV I A% =« OO VANLUN=ZON |+ + o ~eNew 30
£t
GRS 8
[&
> N

F— N XECSCHOHODOIIHXGHITO H0QA0CTH 4
b
@
m

INTENTIONALLY BLANK

30V4HNS LOH NO
30Vd 10N OQ

‘penseses siyBy Iy PeWBLIAdOD PUOM "V'S'N Ul PejuULd

‘anpo * ‘|l00YO8 19188 Z09L0 N “ORSUSNIBH
‘v21 80d ‘d10D 91607 0101 Aq peysiignd pue pejyBuidod

‘oAUl

"3S0dUNd HVINOLLEVd V HOd4
SS3NLIJ HO ALINIEV.LINVHOHIN

40 SILLNVHHVM a3IdNI
HO SS3UdX3 ON 34V IH3IHL

(Auedwog xoog uephey)

40 U) BujwwesBoud, JO Jouiny
uey0y| ‘D ueyders :Ag

alil #

	Side 1
	Introduction
	Basic Data Types
	Conversion of Data Types
	Statement Summary
	Operators
	Expressions
	Esc Chars
	Preprocessor Statements
	typedef
	Constants
	Variable Usage
	Arrays
	Pointers
	Functions
	Structures
	Unions
	Enum Data Types

	Side 2
	printf
	Unix cc Command
	The lint Command
	scanf
	Commonly Used Functions
	abs-gets
	getw - unlink

	Reminders
	CMD Line Args
	Unix Tools
	ASCII

